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A series of plasma numerical simulation has been performed in order to understand 
the enhancement of nonphysical noises and instabilities due to the use of a spatial grid. 
Several different superparticle models including the Nearest Grid Point (NGP) model, 
Cloud-in-Cell (CIC) or Particle-in-Cell (PIG) models, Lewis energy conserving code, 
and the multipole expansion code have been examined for a Maxwellian plasma and 
a one beam plasma using a one-dimensional, one-specie (electron) plasma. An instability 
was observed for all of the models when the Debye length was too small compared 
with the grid size. When the Debye length is comparable to the grid size, no instabilities 
were observed. However, the enhancement of noises at high frequencies (w 2 3wpL) 
may not always be negligible even for long wavelength modes for the NGP model. 
For the NGP and CIC, PIC models, the experimental results are in good agreement 
with Langdon’s theory. It is observed that the dipole expansion model, which is the 
first-order approximation to the multipole expansion scheme, is similar to CIC, PIC 
models in many respects and appears to be the same order of approximation. 

INTRODUCTION 

This paper presents a numerical study on the nonphysical noises and instabilities 
arising from the use of a spatial grid in various superparticle models now in use 
in plasma simulation. The models examined include the Nearest Grid Point 
(NGP) model [l], Cloud-in-Cell (CIC) [2] or Particle-in-Cell (PIG) [3] models, 
Lewis energy conserving code [4], and the multipole expansion code [5]. Since the 
use of a spatial grid in plasma simulation with particles is now widespread, and 
there is a general inclination to economize, using.coarse time and space grids, it 
is important to understand the effects of such grid noises, especially in the enhance- 
ment of nonphysical noise or instabilities in order to distinguish physical infor- 
mation from nonphysical information. 

The presence of grid instabilities was predicted by Lindman [6] and by 
Langdon [7]. Langdon predicts that when the Debye length is small compared with 

475 
Copyright 8 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



476 OKUDA 

the grid size, numerical modes due to the discreteness of a spatial grid, called aliases, 
can destabilize plasma oscillations, even in a thermal plasma. When the Debye 
length is comparable to the grid size, no instabilities will be observed. However, the 
enhancement of the noises at high frequencies may not always be small. 

With a one-specie (electron), one-dimensional plasma, NGP, CIC, PIC, Lewis 
energy conserving code and the dipole expansion scheme have been examined for 
both Maxwellian and beam plasmas. The properties of various models are discussed 
from different points of view, such as the energy conserving property, linear 
instability property, and the enhancement of high frequency noise. Some initial 
results of such measurements have already been reported for a one-dimensional 
model [S, 91. An extensive experimental study of a two-dimensional model has 
also been reported [lo]. 

The effect of discrete time step is not considered here and is believed to be quite 
small compared with the effect of a spatial grid. 

EXPERIMENTAL RESULTS 

In the following, results of numerical simulations are shown together with 
comparisons witht the theory [7, Ill. First, a Maxwellian plasma is examined when 
the Debye length is small compared with the grid size. Then a case is followed 
when the Debye length is equal to the grid size. Finally, a one-beam plasma is 
examined showing a strong instability for all models when the beam is cold. The 
parameters of the experiments are listed in Table I. 

TABLE I 
Parameters of the Experiments 

Experiment 

Debye 
length 

AD Model 

Length of Thermal Drift Total no. 
one period velocity velocity of particles 

L Vt Vd N 

0.1 NGP 8 0.1 0 3168 
0.1 CIC, PIG 8 0.1 0 2376 
0.1 Dipole 16 0.1 0 3168 
1.0 NGP 64 1.0 0 1000 
1.0 CIC, PIG 64 1.0 0 1000 
1.0 Dipole 64 1.0 0 1000 
0 CIC, PIG 64 0 0.16 1000 
0 Dipole 64 0 0.12 1000 
0 Lewis 64 0 0.12 1000 

time step of integration; 0&t = 0.2 
Ax = 1 
%s = 1 
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A. Maxwellian plasma with a small Debye length 

Experiment 1. NGP model was first checked using an ordered start [12]. 
3168 particles (sheets) where arranged into 32 groups each with 99 particles. 
All groups have the same Maxwell velocity distribution. A small modulation in 
velocity space was added to the Maxwell distribution to excite the second mode 
(X = L/2) which is the most unstable-mode in the model; with the uniform initial 
loading being noiseless, the initial modulation was found necessary. 

Figure 1 shows the evolution of the instability in phase space at different time 
steps. The field, kinetic and total energies with the development of the instability 
are given in Fig. 2. A small modulation emerges at the early time steps, which is 

Phase-space dlstrlbutian 

WpJ = 5 
i ..,.,_. . . . . . . _,... ~... . . . . . -’ “‘7 

0 
4 Posiiion , X a 

s : 

t. 
10 

,r--.--- -’ ” . . . 

1 0 

r- . ..-._- ..^.^.._. 

4 7 

.z 
B az 3; 
2. :.:..’ ” .’ 

O- 
: 

-3 i 

3 j ..: 
.,. _ ::, 

o- 
_. .: ,: . . 

-3 -1 

20 
, .” . . . . ---r-... .- . . . . -_.- .._., 
0 4 e 

L. 30 

b----- b-----‘-’ 8 

.: 
.Y’. .. :‘. 

::.- .,_ 
:‘: /..: 

.: f :( .;..i’ 
.‘..“.:.:T 
:: I: .::: ..L i. 5: :.. 

.- ..,. 

_ ‘: 

. . 

:‘.. 3 5 

,. ,z. 

: - 
- .’ 

.:.- : 

‘: .: :, “.. .+” ‘. .‘I. 
_ ( .,. :. :: ~.. L.. 

.: ., T 

- 
:.:.L. /.: 
: : 40.- = 

FIG. 1. Evolution of a grid instability in phase space for a Maxwellian plasma. A quiet start 
was used. ho/Ax = 0.1, No = 40, and L/Ax = 8. Experiment 1. NGP. 
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due to the initial condition, The growth rate (wJw~~ = 0.1) and the oscillation 
frequency (uJ&~,~ = 0.78) of the second mode are in good agreement with the 
linear theory [7]. The modulation continues to grow and becomes appreciable 
at c.aDet = 20, which is almost three plasma periods. At this stage, the field energy 
reached several percent of the kinetic energy and the total energy itself begins to 

(b) Total kinetic energy 
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FIG. 2. Growth of the total field (a), kinetic (b) and the total (c) energies with time. Field 
energy normalized by the initial kinetic energy grows exponentially with the theoretically expected 
growth rate and the frequency as shown by the soild line. Experiment 1. NGP. 

increase rapidly as shown in Fig. 2. After this stage, the energy continues to grow 
without appreciable saturation or limiting. Near the end of the calculation 
(co& = 40), the kinetic energy reaches several times its initial value, resulting 
in the increase of the Debye length by a factor two and reduction of the growth 
rate. However, the catastrophe has already taken place. Higher spatial harmonics 
are generated with the development of the instability. 
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Experiment 2. Now we consider the case in which linear interpolation is used 
for charge and force assignment (CIC, PIC). The parameters of the experiments are 
the same as in Expt. 1 except for the total number of the particles, which is now 
reduced to 2376. Linear analysis shows that the maximum growth rate is 
q/w,, = 1.3 x lo-%, which is one order of magnitude smaller than the NGP 
due to the smoothing of the interaction. 

Figure 3 shows the development of the field energy of Fourier modes in the 

Energy of Fourier modes 
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FIG. 3. The energies of the Fourier modes normalized by the kinetic energy. The growth 
rates are much smaller than those in Expt. 1 and are close to the theoretical predictions shown 
by the solid lines. &/Ax = 0.1, No = 30, and L/Ax = 8. Experiment 2. CIC, PIC. 

model. It is predicted that the first mode (k A x = 7r/4) is weakly unstable 
G-4%, = lo-3 and the second mode (k A x = z-/2) is at about the maximum 
growth rate (w&.Q,~ = 1.3 x 10-2), and the third mode will Landau-damp. The 
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first and second modes grow with nearly the expected growth rate and the oscillation 
frequency. The total energy (not shown) was conserved within 0.5 % up to the end 
of calculation. Hence the growth rate of the instability is small, the maximum field 
energy was 0.25 % of the kinetic energy and this value is not large enough to lead 
the plasma to blow up. Fourier modes are still in the linear stage during the calcu- 
lation. Although the instability is weak, it is expected that the effects of the 
instability will be appreciable for a longer run. 

Experiment 3. We now consider an instability with the dipole expansion model. 
Figure 4 shows the development of the total field and kinetic energies for the same 
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FIG. 4. Total field and kinetic energies of the Experiment 3 for the dipole expansion code. 
&,/Ax = 0.1, L/Ax = 16. Experiment 3. Dipole. Experiment 3. Dipole. 

physical parameters as before. The field energy exponentiates up to until WBet = 80, 
where the kinetic energy begins to increase appreciably. Then the instability 
gradually saturates as the Debye length increases with the increase of the kinetic 
energy as Expt. 1. The phase-space structure is also similar to that of Expt. 1. 
The overall growth rate is estimated from Fig. 4 and it is about 0.3 of wge and is 
greater than that of CIC, PIC models. 

A similar experiment is performed with the linear version of Lewis energy 
conserving code in which charge density is calculated by using a linear interpolation, 
while the electric field is calculated from the nearest grid point method [4]. No 
instabilities were observed and the total energy was conserved one part in lo6 
which is consistent with the theory [7, 111. 

These experiments are the cases where the maximum growth of the instability 
can be expected and, in fact, the instability becomes weaker by either increasing 
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or decreasing the Debye length. Several additional experiments are performed for 
larger Debye lengths for practical interests. For the NGP model, cases where the 
Debye length is 0.2 and 0.3 of the grid size are examined. An appreciable reduction 
of the growth rate was immediately observed (wJw~~ = 3.0 x 1O-2, 5.0 x 1O-3 
for XD = 0.2 and 0.3 A X) and for h, 2 0.5 A X, no appreciable instabilities were 
observed. For CIC, PIC and dipole expansion codes, the growth rate was quickly 
reduced with the increase of the debye length and no instabilities were observed 
when the Debye length was larger than about 0.3 A X. 

Therefore, it is certain that there is a numerical instability for most of the codes 
when the Debye length is too small compared with the grid size. The instability 
is quite strong for the NGP model and for CIC, PIC and the dipole expansion codes, 
the instability will be weaker. It appears that one should not choose the grid size 
much larger than the Debye length to avoid a numerical instability and this is 
consistent with a physical discussion that the grid size gives the minimum resolution 
of the model and should be smaller than the Debye length. 

For a large enough Debye length or a small enough grid, no linear instability 
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FIG. 5. Fluctuation spectrum of the charge density for the NGP and CIC models with the 
comparison with theory. For the NGP model, the enhanced noise is quite large. X,/Ax = l., 
Nn = 16 and L/Ax = 64. The wavenumber of the mode is khD = 0.6. Experiments 4 and 5. 
NGP and CIC. 
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will be excited. However, the linear instability or the total energy conservation 
gives only a partial information of the behavior of a model. A more precise infor- 
mation about the behavior of a model can be obtained from a more careful 
measurement. The next section is devoted for the measurement of the fluctuation 
spectrum which includes the most detailed information. 

B. Maxwellian plasma with the Debye length equal to the grid size 

Experiments 4, 5, and 6. In this section, we show the measurements of the 
fluctuation spectrum of the charge density (p2)kU in a Maxwellian plasma with the 
Debye length equal to the grid size; and hence no linear instability is expected. 
Theoretical predictions [l l] are compared with the observation for NGP and CIC 
models. The measurements of the spectrum have been carried out by Fourier 
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FIG. 6. Fluctuation spectrum of the charge density for the dipole code. It is observed that 
the dipole code and the CIC model show the same order of the noise. AD/Ax = 1, ND = 16 and 
L/Ax = 64. Experiment 6. Dipole. 
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transforming the correlation [function of the charge density using a standard 
technique [ 131. 

Figure 5 shows the fluctuation spectrum for NGP (Expt. 4) and CIC (Expt. 5) 
models. The length of the system is 64 Debye length and the calculation was 
carried out until 200 w& for all the experiments shown in this section. The wave- 
number of the mode shown in Fig. 5 is kh, = 0.6. Enhanced high frequency noises 
can clearly be seen for both NGP and CIC models where no such high frequency 
oscillations exist in a real plasma or a gridless plasma. They agree quite well with 
the theoretical predictions [l 11. The enhanced noise for the NGP model is not small 
at all and can play an appreciable role for physical processes. This noise is reduced 
two orders of magnitudes by using a smoother (linear) interpolations of charge 
and force and will be completely negligeble for CIC and PIC models for practical 
points of view. Several other modes with different wavelengths (khD = 0.1 - 1.) 
were examined and it is confirmed that the enhancement of the noise is always 
appreciable for the NGP model even for a long wavelength mode (khD < 1.). 
For CIC, PIC models, it is quite small and can be negligeble for most of the 
simulations. The total energy conservation was within 0.2 % for the CIC model and 
0.6 % for the NGP model throughout the whole calculation. 

9’ 
FIG. 7. One beam instability for the CIC model. The growth rate is about 0.14~~~ . The beam 

is strictly cold. ud/w,,dx = 0.16, L/Ax = 64. Experiment 7. CIC, PIC. 
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Figure 6 shows similar measurements for the dipole expansion model for three 
modes (Expt. 6). It is observed that the enhanced noise is much less than the NGP 
model and is about the same level as the CIC model. This fact was confirmed for 
the other modes in the model. It appears that the dipole expansion scheme is the 
same order of approximation as the linear interpolation scheme [5]. The conser- 
vation of the energy was within 0.1 % for this calculation. 

C. Instabilities in a one beam plasma 

Experiments 7,8 and 9. Here we consider another class of numerical instability 
in a plasma beaming with respect to a spatial grid. This instability occurs when a 
plasma is streaming slowly with respect to a grid so that some of the grid aliased 
modes see the beam at their phase velocities. Therefore, in general, short wavelength 
modes whose wavelengths are comparable to the grid size are dominantly unstable. 

Three experiments are shown in Figs. 7-9 (Expts. 7-9), when a beam is strictly 
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RG. 8. One beam instability for the Dipole code. The growth rate is about O.OSw,, . 
o,+/oJx = 0.12, L/Ax = 64. Experiment 8. Dipole. 

cold. The parameters of the experiments are summarized in Table I. For CIC 
(Fig. 7) and the dipole (Fig. 8) codes, the feature of the instability is very similar 
to a Maxwellian plasma shown in A. First the field energy grows exponentially 
and saturates at the time when the kinetic energy increases appreciably. The 
saturation of the instability is due to the increase of the Debye length, as before. The 
growth rate is large and more than 10 % and about 4 % of qe for CIC and dipole 
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expansion codes, respectively. The observed large growth rate for the CIC model 
is consistent with the prediction [ll]. 

It is interesting to observe that Lewis energy conserving code also shows this 
instability as shown in Fig. 9. The total energy is conserved strictly in spite of the 
instability in this model. The growth rate is as large as O.lw,, . 

We looked at the case where the beam is not strictly cold adding a small thermal 
spread of the order of the beam velocity. The Debye length of the beam is therefore 
small and is about 0.1 A X. No appreciable instability was observed for all of the 
models due to a small thermal spread in the beam velocity. 
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FIG. 9. One-beam instability for Lewis code. The growth rate is about 0.1~~~. The total 
energy is strictly conserved in spite of the instability. va/ o,,dx = 0.12, L/An = 64. Experiment 9. 
Lewis code. 

CONCLUSION 

We have confirmed by numerical experiments that nonphysical instabilities can 
develop in a physically stable plasma due to the presence of grid aliased modes. 
When the Debye length is too small compared with the grid size, the instability 
has a large growth rate and can grow to large amplitudes, causing the total energy 
to increase. When the Debye length is about the same as the grid size, no instability 
was observed. However, the enhanced noise at high frequencies may not be 
negligeble for the NGP model. 
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It is confirmed that the dipole expansion model is much more quiet than the 
NGP model and appears to be the same order of approximation to CIC, PIC 
models. 
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